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Propagation of an ionizing shock wave from a point source in a homogeneous magnetic 
field is considered. An approximate solution of the equation describing the shock wave sur- 
face is obtained. Propagation of an ionizing shock wave within a magnetic field is met in 
a number of fields within physics: astrophysics [i, 2], laser thermonuclear synthesis [3], 
space experiments [4, 5], etc. In [6] a self-similar solution was obtained for the front 
surface of a shock wave propagating from a point source in the atmosphere. The effects of 
atmospheric inhomogeneity on shock-wave motion were considered in [7, 8]. When the effect of 
magnetic field is not considered, the problem of ionizing shock-wave propagation in a gas 
does not differ from those considered in [6-9]. The present study will consider the effect 
of a homogeneous magnetic field upon propagation of a strong shock wave from a point source. 

It is well known [I0] that complete ionization of air occurs at Mach numbers equal to 
14-20, i.e., at p2/pl ~ 200-500 (where px is the pressure of the neutral gas ahead of the 
shock wave front and P2 is the gas pressure behind the front). At a height of ~ 3" 105 m the 
unperturbed air pressure Pl ~ I0 -s N/m 2, so that ionization in the air occurs at P2 ~ 10 -3 
N/m s . The maximum "magnetic" pressure on the ionized gas due to the earth's magnetic field 
Ho = 0.50e is ~ 10 -3 N/m s . From these values it follows that at an altitude of ~ 3" 105 m 
the effect of magnetic field upon ionizing shock wave propagation must be considered. Since 
the free path length of the charged particles is ~ i0 m and the ionic Larmor radius is ~ I0 m, 
the hydrodynamics approximation for a shock wave front radius ~ 103 m or higher is well satis- 
fied. The height of a standard atmosphere at ~ 3. l0 s m is equal to ~ 1.5' i0" m [I0], so 
that for a shock-wave front radius of ~ 103 m the effect of atmospheric inhomogeneity can be 
neglected. 

Magnetic field perturbation by a strong spherical shock wave was considered in [ii]. 
In [12] it was shown that the magnetic field penetrates beyond the shock-wave front relative- 
ly slowly. For a plasma of infinitely high conductivity, the magnetic field behind the 
front is negligibly small [13, 14]. 

Considering the above, we write the Rankin--Hugoniot conditions relating the gas para- 
meters on the two sides of the discontinuity in the form [15, 16] 

D2 ~ P2 ~1 (P2 - - -  Pl  - -  H27'8~) (P~ -- ~i)-i; (i) 

e 2 - e ~ - k 0 . 5 ( p l - g e )  p2 Pi (P2+PI~H2/8n)=O, (2) 

w h e r e  D i s  t h e  s h o c k - w a v e  v e l o c i t y ,  p~ and P2 a r e  t h e  h y d r o d y n a m i c  p r e s s u r e s ,  p l  and  D2 a r e  
t h e  d e n s i t i e s ,  and  e~ and ~ a r e  t h e  i n t e r n a l  e n e r g i e s  o f  t h e  g a s  a h e a d  o f  and  b e h i n d  t h e  
s h o c k - w a v e  f r o n t .  E n e r g y  d i s s i p a t e d  i n  g a s  i o n i z a t i o n  i s  n e g l e c t e d  i n  Eqs .  ( I ) ,  ( 2 ) .  

U s i n g  t h e  e q u a t i o n  o f  s t a t e  o f  an  i d e a l  g a s  f o r  t h e  p l a s m a  and n e g l e c t i n g  h y d r o d y n a m i c  
p r e s s u r e  a h e a d  o f  and  b e h i n d  t h e  s h o c k - w a v e  f r o n t ,  we f i n d  t h e  r e l a t i o n s h i p  b e t w e e n  Pa and 

P s  

P2 = p~[i + 2(y - -  i)-~(1 + H V ( 8 n p 2 ) ) - ~ ] .  

We write the equation for shock-wave velocity in the magnetic field in the form 

D 2 = 0,Sp~ (y - -  l)  p~-~ [t - -  Ha/(Szcp2)*" ] [1 -~- 2 (y - -  i ) -~  (t  -~- It2/(8z~p2))-~]. 

(3) 

(4) 
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In the special case H = 0 we obtain from Eq. (4) the velocity of a strong shock wave in 
a gas [5, i0] D 2 = 0.5p2(I + y)0x -I. 

In the case where the ratio of the "magnetic" pressure of the field to the hydrodynamic 
pressure on the front is small (B >> i, B = 8~p2H-2), Eq. (4) simplifies: 

D 2 - -  0.5p2 (t + 7) PF* - -  H~ (8~p,)-*.  (5 )  

Following [7, 17], we will assume that the entire mass of ionized gas moves together 
with the shock-wave front. We will denote the equation of the front surface by f(r, 0, t) 
= 0. Then the shock-wave velocity can be written as 

oi I-L O = -- -~7- i V/ 

F o r  t h e  g a s  p r e s s u r e  p2 we u s e  t h e  e x p r e s s i o n  [7]  

(6) 

P2 = LEo@ - -  t ) /V ( t ) ,  (7)  

w h e r e  Eo i s  t h e  t o t a l  e n e r g y  l i b e r a t e d  a t  t h e  p o i n t  s o u r c e ,  V ( t )  i s  t h e  v o l u m e  o f  i o n i z e d  
g a s  o c c u p i e d  by  t h e  w a v e ,  and  ~ = X(Y) i s  a c o e f f i c i e n t  w h i c h  c h a r a c t e r i z e s  t h e  r a t i o  o f  t h e  
e n e r g y  d e n s i t y  i n  t h e  v i c i n i t y  o f  t h e  s h o c k - w a v e  f r o n t  t o  t h e  mean e n e r g y  d e n s i t y  o v e r  v o l u m e  
[ 7 ] .  H e r e ,  a s  i n  [ 7 ] ,  i t  i s  a s s u m e d  t h a t  h i s  c o n s t a n t  o v e r  t h e  e n t i r e  s u r f a c e .  

We w i l l  c o n s i d e r  t h e  c a s e  o f  low " m a g n e t i c "  p r e s s u r e ,  so  t h a t  w i t h  c o n s i d e r a t i o n  o f  Eq. 
( 5 ) ,  Eq.  (6)  f o r  t h e  s h o c k - w a v e  s u r f a c e  c a n  be  w r i t t e n  i n  t h e  f o r m  

0t / = (vo  [0,5p  (1 + 7) p? 1 -  

M o r e o v e r ,  we a s s u m e  [8]  t h a t  t h e  e q u a t i o n  o f  t h e  s h o c k - w a v e  f r o n t  i s  s o l u b l e  i n  a s p h e r -  
i c a l  c o o r d i n a t e  s y s t e m  r e l a t i v e  t o  t h e  f r o n t  r a d i u s ,  r = r ( 0 ,  t ) .  W i t h  c o n s i d e r a t i o n  o f  Eq. 
( 7 ) ,  Eq. (8)  t a k e s  on t h e  fo rm 

2m~ ~t ] ----- (I --iah2) [I +-~ (-~-) ]' (9) 

where m(t) = piV(t)(y 2-1)-1(%Eo)-x; h 2 = H2Ho-2; ~(t) = H~m(4~pl)-1; Ho is the magnetic 
field intensity at infinity. For ~ >> i we have ~ << i. 

The initial condition for Eq. (9) is the equation of the surface bounding the wave vol- 
ume at the initial time. 

The magnetic field outside the volume through which the shock wave has traveled is de- 
termined from the magnetostatics equations with boundary conditions on the moving surface 
separating the ionized gas and magnetic field [ii, 12] and constant field at infinity. Since 
the ratio of magnetic to hydrodynamic pressure is low (~ << l),we will seek a solution of 
Eq. (9) in the form of an expansion in powers of the small parameter 

co 

r (0, t) = r o (t) + ~ cc~r h (0, t). 
k = l  

Equations for calculation of ro(t), rx(e, t), etc. can be obtained from Eq. (9), 

OrolOt = (2m)-1/2; 

OrllOt = - -  O, 5h 2 (2m)-1/2. 

The zeroth approximation at ~h 2 = 0 is independent of angle 

(!0) 

(ii) 

ro (t) = At2~5, A = 0,93 (E0p~l)  1/~ 

and coincides with the solution of the self-similar problem of shock-wave propagation in the 
atmosphere presented in [6]. 
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Substituting the solutions of the magnetostatics equations [15, 18] h = (i + 0.5r~r -s) 
sin 0 at r = re(t) in Eq. (i!), we find 

~](0, t) = - - ( 9 / 8 ) A t V  5 sin ~ 0. 

To the  a c c u r a c y  of  a second a p p r o x i m a t i o n ,  t he  s o l u t i o n  of  Eq. (9) f o r  the  s u r f a c e  of  an 
i o n i z i n g  shock  wave p r o p a g a t i n g  in  a homogeneous a x i s y m m e t r i c  m a g n e t i c  f i e l d  has the  form 

r (0,  t) = A t i ,  '~ [t - -  (3/8) H~A3t6/5 (~Eo) -~ (?2 _ 1)-1 sin 2 O]- (12) 

I t  i s  e v i d e n t  f rom Eq. (12) t h a t  a t  a f i x e d  moment of  t ime the  shock-wave  f r o n t  i n  the  
second a p p r o x i m a t i o n  i s  an e l l i p s o i d .  

In  the  c a s e  where t he  r a t i o  o f " m a g n e t i c " t o  hydrodynamic  p r e s s u r e  i s  no t  s m a l l ,  Eqo (6) 
was solved numerically by the finite-difference method in a spherical coordinate system with 
consideration of Eq. (4). 

For this purpose the differential operators in Eq. (6) were replaced by differences. 
The derivative with respect to angle r-1~r/~8 was replaced by centrally symmetric differences, 
so that the accuracy of the calculations with respect to coordinate is of the order of O(h~) 
(where h8 is the step in angle), while the time accuracy is O(~) (where ~ is the step in 
time). 

The problem was numerically solved with the following parameter values: the shock-wave 
front radius at the initial time was taken as r(t = 0) = i, the '~agnetic"/hydrodynamic pres- 
sure ratio at the initial time 8 = H~V(y --I) (8~Eo) -I = 10 -I , the initial energy density 
C = (y--I)(~Eo)*/2(2p~V) -I/~ = i. We note that these arbitrary parameter values do not limit 
the generality of the solution. 

Calculations were performed with an angle 8 varying from 0 to ~/2 in steps h0 = ~/360. 
The precision of the calculations was maintained by variation of the size of the steps in 
time and angle. Under the influence of the magnetic field the shock-wave front deforms, so 
that the calculations considered the change in the angle of the normal to the surface as com- 
pared to the spherically symmetric case by an amount 9 =arctan (r-IZr/~8). 
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Figures 1-4 show some results of numerical solution of the problem of shock-wave pro- 
pagation from a point source in a homogeneous magnetic field. 

Figure 1 shows curves of r(~, t) for various moments in time. The dashed curves cor- 
respond to ionizing shock-wave propagation at times i, 2, 3, 5, i0, 15 without magnetic 
field. The solid curves describe the shock-wave front at t = O, I, 2, 3, 5, i0, 15, 25, 35 
sec with consideration of magnetic field. It is evident that at t = 25 the front motion in 
the direction perpendicular (e = ~/2) to the unperturbed magnetic field intensity is halted. 

Curves of r(e, t) as a function of time are shown in Fig. 2 for e = 0 (curve i), e = ~/4 
(curve 2), e = ~/2 (curve 3)~ For comparison, Fig~ 2 also shows r(t) (curve 4) for propagation of a 
spherically symmetric shockwave [6]. In the direction e = 0, for a fixed t, the shock-wave transverses 
a greater distance than in the spherically symmetric case. This is because, due to deforma- 
tion of the front surface by ponderomotive forces, the volume of ionized gas at a given time 
is always smaller than in the spherically symmetric case, so that the gas pressure on the 
front is higher. 

Figure 3 shows gas pressure on the front as a function of time with (curve i) and with- 
out (curve 2) consideration of magnetic field. 

Figure 4 shows shock-wave front velocity as a function of time for various directions: 
e = 0 (curve i), e = ~/4 (curve 2), e = ~/2 (curve 3). Curve 4 corresponds to the spherical- 
ly symmetric case. At certain times (t = 25 at (t = 25 at e = ~/2, t = 35 at e = ~/4, etc.) 
the front velocity becomes equal to zero. Assuming the validity of conditions on the discon- 
tinuity, the numerical calculations were performed for the case where the "magnetic" pressure 
exceeds the ionized gas pressure on the front. Due to the large ponderomotive forces, even 
at p2 >> P:, the front velocity in the direction perpendicular to the magnetic field may be 
negative. In later stages of wave propagation (at P2 ~ Pl), apparently pulsations of the ion- 
ized gas "disk" occur. 

It is evident from Fig. 4 that the ionizing shock-wave front velocity at e = 0 is higher 
than in the spherically symmetric case. 

It is not possible to determine the time when the front halts in the direction e = ~/2 
from solution of Eq. (12). However, from dimensional considerations it follows that the 
corresponding time is given by to = kE~/3p~/3H75/3. Numerical calculations give k = 40. 

In conclusion, we will note the correspondence between the model considered and the 
actual physical process. In reality the gas pressure on the shock-wave front is angle-de- 
pendent, which leads to a reduction of the magnetic field's effect on wave characteristics. 

The author thanks S. Z. Dunin, L. P. Gorbachev, E. E. Lovetskii, and V. S. Fetisov for 
their evaluation of the study, as well as A. P. Cheplakov for assistance in performing the 
calculations. 
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A NUMERICAL INVESTIGATION OF THE ELECTRICAL CP~RACTERISTICS 

OF THE ELECTRODE BOUNDARY LAYER OF A SLIGHTLY IONIZED PLASMA 

OF MOLECULAR GASES 

N. No Baranov, M. S. Benilov, 
G. G. Bochkarev, V. i. Kovbasyuk, 
and G. A. Lyubimov 

UDC 533.924 

The hydrodynamic problem of determining the electrical characteristics of the electrode 
region in a slightly ionized plasma in chemical equilibrium was formulated in [i] and subse- 
quently analyzed more than once. The present article is devoted to a numerical solution of 
this problem. We note that, besides the independent interest, such a solution is also of 
interest for estimating the degree of accuracy of various approximate approaches. 

The problem under consideration is a boundary-value problem for a system of nonlinear, 
ordinary differential equations; for the conditions of practical interest this system con- 
tains two small parameters to the leading derivatives, while in the case of a relatively low 
electrode temperature it also contains a third small parameter in the exponent. Certain dif- 
ficulties arise in the direct numerical solution of problems of this type, and therefore one 
or another simplifying assumptions were made in [2-4], devoted to the numerical solution of 
this problem. For example, in [2, 3] the electrode layer is subdivided into a space-charge 
layer and a quasineutral region, and the solution of the problem is sought separately in each 
region with subsequent joining. In this case the ionization of neutral atoms and the recom- 
bination of charged particles in the space-charge layer are ignored, which prevents a correct 
description of the behavior of the volt-- ampere characteristic curves of the electrode re- 
gion of molecular-gas plasma for high densities of current to the electrode [5]. Some import- 
ant terms of the system of determining equations were not taken into account in [4], and in 
[2-4] the problem was solved by the shooting method. 

An efficient iteration algorithm based on the trial-and-error method is developed in 
the present article to obtain a direct numerical solution of the problem under consideration. 
Calculation results are given for the case of a plasma of combustion products with a potas- 
sign admixture and a wide range of electrode temperatures, and a detailed comparison is made 
with the results of calculations by the analytical equations of [5], obtained by the method 
of joined asymptotic expansions, and with experimental data. 

I. Statement of the Problem 

Let us consider a multicomponent, slightly ionized plasma of molecular gases containing 
neutral components, positive singly charged ions of atoms of one of the neutral components 
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